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EFFECT OF A TWO-DIMENSIONAL PRESSURE

ON THE CURIE POINT OF BARIUM TITANATE

by

P. W. Forsbergh, Jr.

Laboratory for Insulation Research

Massachusetts Institute of Technology

Cambridge, Massachusetts

Abstract: By hydraulic means, a single crystal of barium titanate in the shape

of a flat circular disk was subjected to a pressure exerted on its edges

and not on its faces. A very slight pressure removed all domains that

were not normal to the disk. The stress system then consisted of equal

pressures on the two a axes, and no pressure on the c axis. The tran-

sition temperature increased with the square of the two-dimensional

pressure, while, according to Merz, a hydrostatic pressure produces

a linear drop. Using Devonshire's expansion for the free energy and the

appropriate Legendre transformation, the free energy, depending on

polarization and pressure, was obtained for both two-dimensional and

hydrostatic stress systems. This yielded a purely linear-pressure

dependence, and it was therefore necessary to supplement Devonshire's

expansion with higher terms in order to obtain a quadratic effect.

While it was too difficult to evaluate the effect of pressure on the

transition temperature itself when higher terms were included, it was

easy to determine the effect on the Curie-Weiss temperature T . This

is the temperature at which the inverse susceptibility of the cubic phase

extrapolates to zero, and its pressure dependence will be the subject of

a future paper. For both two-dimensional and hydrostatic pressures, the
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linear part of the shift of the Curie-Weiss temperature was found to

depend only on the lower terms in the free energy, and provide two

independent relations for determining the two g coefficients. The

quadratic shift of the Curie-Weiss temperature depended on the higher

terms with which Devonshire's expansion was supplemented, and a

reasonable interpretation of these higher terms gave an upward direction

to the quadratic shift of the Curie-Weiss temperature.

Introduction

It has long been known that substitution of strontium for barium in barium

titanate causes a drop in the Curie temperature that depends linearly on the

strontium concentration. This has been explained as due to an effective decrease

of the unit cell size caused by the smaller strontium ions. If, instead, the unit

cell size is reduced by application of hydrostatic pressure, the transition temper-

ature decreases with decreasing unit cell size at about the same rate. 3) The

substitution of lead for barium, on the other hand, raises the transition temper-

ature at a rate depending linearly on the lead concentration. 2) Lead titanate

itself has a much higher Curie temperature (490 0 C) and is much more strongly

tetragonal. 4) In fact, optical observations on crystals grown in the laboratory5)

show that it remains tetragonal all the way down to liquid helium temperatures,

although with a rapid drop of the birefringence. The effect of hydrostatic

1) A. von Hippel and co-workers, N.D.R.C. Reports 14-300 (1944) and 14-540

(1945); A. von Hippel, Breckenridge, Chesley and Tisza, Ind. Eng. Chem.

38, 1097 (1946).

2) D. F. Rushman and M. A. Strivens, Trans. Farad. Soc. 42A, 231 (1946).

3) W. J. Merz, Phys. Rev. 78, 52 (1950).

4) G. Shirane, S. Hoshino and K. Suzuki, Phys. Rev. 80, 1105 (1950); G. Shirane

and E. Sawaguchi, Phys. Rev. 81, 458 (1951).

5) H. H. Rogers, Tech. Report 56, Lab. for Insulation Research, Mass. Inst.

Tech., 1952.



pressure has been discussed by Slater6) in terms of his statistical model of

barium titanate. In this model, the local potential seen by the Ti ion, that is,

the potential exclusive of dipole interaction, is represented by one harmonic

potential well of cubic symmetry, supplemented by a small, fourth-power

term to keep the spontaneous polarization finite. If the lattice size is reduced

by hydrostatic compression (or strontium substitution), the oxygen ions that

surround the Ti ion tetrahedrally are pressed more tightly against the Ti ion.

The consequent stiffening of the local harmonic potential well requires a greater

local field due to dipole interaction to displace the Ti ion a given distance.

A two-dimensional pressure, however, should have quite a different

effect, for the crystal will contract along two axes but expand along the third.

If the two axes undergoing compression are cubic axes, the local potential well

will acquire tetragonal symmetry and will become football shaped, or possibly

even dumbbell shaped. The latter would mean that the single local potential well

had become a double well, which would result in an order-disorder type of tran-

sition if the barrier between the two wells were comparable to kT. The way in

which a two-dimensional pressure affects the Curie transition in barium titanate

will depend very critically on how the z expansion is related to the x contraction,

and particularly on how the internal field is affected by these strains. One may

say that the change in the local potential well produced by a two-dimensional

pressure should allow the Ti ion to displace more freely in the z direction. On

the other hand, an expansion of the lattice in the polarization direction and con-

tractions across the polarization direction should reduce the local field.

Application of Two-Dimensional Pressures

Bridgman7 ) has made studies of plastic flow and fracture of a number of

6) J. C. Slater, Phys. Rev. 78, 748 (1950).

7) P. W. Bridgman, "Large Plastic Flow and Fracture, 1" McGraw-Hill, New

York, 1952.
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substances under two-dimensional compression. One method was to use a

specially constructed steel die that could actually push on a ductile material

in two directions at once, and the other method was to exert a pull in one

direction on a sample subjected to hydrostatic pressure. The latter method

amounts to a two-dimensional superposed on a hydrostatic compression that

is less than the applied hydrostatic pressure by the strength of the pull. In

the present work, we have developed a method of applying a uniform two-

dimensional compression to the edges of a disk-shaped sample with pressures

up to 1000 atmospheres. While this is small compared to the range of two-

dimensional pressure obtainable by Bridgman's second method, our technique

has the advantage of leaving the faces of the disk exposed so that one can make

optical and X-ray measurements and apply electric fields.

The method relies on a rubber "3-ring", which is a circular ring of

soft rubber with a circular cross section. The 0-ring is placed around the

disk-shaped sample as shown in Fig. I and the combination is clamped in a steel

clamp as shown in Fig. 2. The faces of the clamp have windows to permit di-

rect observation of the crystal. The clamp is tightened, thereby flattening the

O-ring, until the separation of the faces of the clamp is only ca. 2 mils greater

than the thickness of the crystal. This clearance allows free expansion of the

crystal in the direction not subjected to pressure. Oil is forced into the clamp

as shown in the figure by means of a hydraulic pump. The pressure of the oil

pushes the O-ring against the edges of the crystal, and the O-ring prevents the

oil from leaking out. The outside seal at the point S is accomplished by another

0-ring. Actually, the clamp used in the present work was designed so that one

faqe of the clamp is electrically insulated, observation with a microscope

being sufficient to determine the transition temperature. By introducing quartz

The electrical measurements will not be reported until a future paper.
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Fig. 1. Disk-shaped BaTiO 3 crystal, with rubber 0-ring around it.

Clamping screws

Crystal• •

Oil inlet hole

Insulated clamp
face

S"- Insulation

Enlargement of
central portion

Oil Oil

T Inner 0-ring

Fig. 2. Details of crystal holder for applying two-dimensional pressure.
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windows, one could apply a different pressure to the faces of the crystal, which

amounts to a superposition of hydrostatic pressure on a two-dimensional pressure.

Since a soft rubber has a low shear modulus, sticking of the rubber to the faces

of the clamp should not create a large pressure correction at the pressure used.

However, if the O-ring is lubricated before clamping, the rubber can relax

back and forth between the faces of the clamp fairly rapidly under changes in

pressure. The data can be taken in such a manner as to allow a check on the

presence or absence of a frictional correction in the pressure, which is read

by means of a Bourdon gauge in the oil line.

Effect on the Transition Temperature

The disk-shaped crystal was cut from a strain-free crystal plate of cubic-

growth habit and of uniform thickness. Its diameter was a little over 1/8 in.

and its thickness, ca. 20 mils. The thickness to diameter ratio of about I : 8

should be sufficient to prevent elastic buckling. The clamp was wound with

nichrome ribbon and well insulated with glass cloth. Temperatures were measured

by means of a mercury thermometer embedded deeply in the massive metal of

the clamp. The transition was observed with a polarizing microscope, which

revealed a considerable disturbance at the transition point. The transition was

reasonably sharp at all pressures. The effect of pressure on the transition was

followed by zigzagging isothermally and isobarically along the transition curve.

The agreement of the downgoing transition temperatures taken isothermally and

isobarically shows that the rubber transmitted the pressure without appreciable

frictional correction (Fig. 3). Unfortunately, the upgoing transition could be

taken only isobarically due to the insensitive needle valve in the hydraulic pump.

The results show a purely quadratic dependance of the transition temperature

on two-dimensional pressure. The width of thermal hysteresis increases with

two-dimensional pressure. The results of Merz, 3) using hydrostatic pressure,
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show a purely linear pressure dependance. If, for convenience, the two-di-

mensional and hydrostatic pressure effects are symbolized by 2H and 3H, re-

spectively, the results can be described as follows, where H is the oil pressure

in atmospheres and Tc the transition temperature:

2H: T = T + 3.lxlO 5"H 2

c c

3H (Merz 3)): T = T - 0.0058 Hc c

Effect of Pressure on Devonshire's Free-Energy Expansion

Devonshire 8 ) has expressed the free energy of barium titanate in terms

of polarization and strain, with respect to the cubic unpolarized configuration, as

A I P x2 +y2 +Z2 +cP 1yz+ + P x2+Y2+Z2
i cj1 (x•+yy+z2) + P +- , c4.(y+t

, +• 1 • C + + ) +P " 4(P 2 PX +P Py +Px+x y z 4- x y z 2 Py z+ Pz Xx+ P y

(1)
2 2 2 22 2 +2 Z (2++ gi(x~xYyy+Zz~ + gl2- {Xx(Py+z) + YyP~~)zz(Px+P-)

+ g9l1 (yzxP yyP y+ z Z P Z)+ 921x y z,) y •

+814(Y z y zxPzpx + xyPxPY) + x y z

The underlined symbols mean the stress or strain tensors and the vector polar-

ization, the components of all of which are in the above expression. For the

present purposes, we need not consider configurations involving shears or any

components of polarization aside from that in the z direction. We are thus con-

sidering the dependence of the free energy on xx, Yy, zzI Pz (which we shall

abbreviate x, y, z, P), all other strain components (the shears) and the x and y

components of polarization being kept equal to zero:

IP 2 22 P 1 o 2 1 .llp4A x 1 c CI (x2+y +z ) + C2 (yz+zx+xy) + X"P + lP

+ g 1 1zP2  + + y)P 2 + I " 6 (2)

8) A. F. Devonshire, Phil. Mag. 40, 1040 (1949); 42, 1065 (1951).



9I

Using the convention that a positive stress shall be a compression and

a positive strain an extension, the three stress components are X = - ZA/ ax,

Y = - )A/)y, Z = - )A/az, and thus for a two-dimensional pressure

- H = c11x + c 1 2 (y + z) + g1 2 P 2

- H = clly + C1 2 (z + x) + gI 2 P2  (3)

0 = c11z + c1 2(x + y) + g 1 1 P2

where the superscripts P of the elastic coefficients at constant polarization have

been dropped for convenience. For a hydrostatic pressure, the stress equations

(3) are the same except that the zero in the third line is replaced by a -H.

To discuss the Curie point and the properties associated with the z di-

rection, we need only compare cubic and tetragonal configurations, so that the

strains x and y are equal, and the stress relations become

H - H = 2H -H = (Cli+c12)x + C12 z + g 12 P

{-H =0 = 2c12x + C(1Z + l4)

which can be solved for x and z, giving

2H x c 1 1 1 g12 -c,,g,, 2

2c 12  H + 2cl 2glz-(Cll+Cc1 )gll pZzc :1 ( C i 12) tcll+2Cl2) (€ic 1-C12) tcll+?.CI2)

3H x (cICli-c 1 2 ) H - c 11g12 C1 2g11  p2()

(c 11-c 1 2 ) (cli+2c1 2) (c 11-c 12 ) (c 1 1+2C1 2 )

S (c 11-c 12 ) H + 2cl 2 gl2-(cll+cl 2 )gll p211 l 12 "cl 2) HI 2 +cl 1....

If we now substitute these expressions for the strains into the free energy

(Eq. 2), remembering that x = y, we obtain for both cases

Ax, _ = terms in H+ terms in HP2+ terms in P 2 +terms in P4+terms in P 6 .(6)

-*
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We can now determine the free energy AX, p expressed in terms of stress and

polarization, and see how it compares with the free energy as a function of

polarization at zero stress, for which the most recent coefficients have been

given by Merz.9) The free energy in terms of stress and polarization is related

to that in terms of strain and polarization by the usual Legendre transformation:

AX,p =A X + xX (7)

where x X is a scalar product, and is the transformation term that must be added

to Eq. (6) to obtain the free energy expressed in terms of polarization and pressure.

The transformation term is
X2H = 2Hx = a term in H 2 - 2 Clllg2)-c Cl 211  HlP2

(c 11 -C1 2 ) tc1 1 +2c1 2 )
(8)

x3_= 2Hx + Hz = a term in H 2 -2 C11g12 -cl 2 g 1l HP2

=a-n (ClC 12) cll+2c1 2)

2c+2 g1 2-(Cll+cl 2 )gll 2
+ (Cli.C 12 ) tCli+2c 12 ) HP

A t, p = tms in H2 + tms in HP + Ap (9)

where AP is the free energy as a function of polarization for zero stress, the

coefficients of which have recently been given by Merz as

A 3� .7xl0 5 (T-To) P 2 - 1.P7xl01 p + 3.8x102 P (10)

00

T is the Curie-Weiss temperature and is about 11 C below the transition temper-

ature, and the units are in electrostatic c.g. s. units.

The only terms through which the pressure can affect the dependence of

the free energy on the polarization are terms containing both H and P, in this

2
case (Eq. 9), the terms in HP . If these terms add up to a positive quantity,

pressure will raise the free energy of the polarized configurations faster than

that of the unpolarized phase, and so lower the transition temperature; if they

9) W. J. Merz, Phys. Rev. 91, 513 (1953).



add up to a negative quantity, it is raised.

Having found the transformation terms (Eq. 8), we now need to calculate

the contribution of A to terms containing both H and P. The terms in A
2 P

that give terms in H and P (viz., HP 2) are as follows, where we have set x = y

since we are only interested in comparing cubic and tetragonal configurations:
21 2 Zcz22

(C1 1 +C 2)X + 1 c11z + 2clXZ + gllzP2 + 2gl 2xP 2. For a two-dimensional

pressure the sum of the terms in HP2 in A X, P is{ (c1 1+c 12) 2 [c1  (c11g 12-c12g11)J + (i cr 2 [ c 1 ( c 2 2 (c +c )g )I

+ Zc 12 [- ?-cl 2(c11g12-c, 2g11d + ?-cl, [_ cii(2ciz.91,-(cii+c,) 1z)iiI

"X HP 2 /(c~l-c 1 2 ) 2 (c 11+2c 12 ) 2

+ (g 11 2c1 -2g 1 2 Cll) HP 2 /(ccllcl 2 ) (c 11 +2c 12 )

The second and fourth terms within the braces cancel, and the first and

third terms, when added together and factored, become 2(c 11g12 -cl 2g11 ) (Cl i -c 12 )

(c 11+2c 1 2 ), which, when multiplied by the quantity outside braces, exactly cancels

the last term in the whole expression, which means that for a two-dimensional

2pressure, A contributes no terms in HP . While, for a hydrostatic pressure

the free energy A contributes -2cl 2gll/(Cll-cl 2 ) (c 11+2c 1 2 ) HP?. Therefore,

when we add on the transformation terms (Eq. 8), the HP 2 term in AX, p is

"-2g 12 (Cli-c 1 2 ) - g1l(clI+c1 2 ) HP2 for 3H

(cIC c1 2 ) tcii +2c 12 ) (11)

and

-2 (c 11-c 12) (c 11+2c 1 2) HP2 for 2H.

The free energy in terms of polarization and pressure is then

2H: Ax p A + [3. 7x0" 5 (T - T )- Z cu1g1 -cl 2 gll H] P2
- (c11 -c C 12) tc 11 +2c 12)

- 1. 7xl0"-13 p4 + 3.8xl0-23 p6

(12)

t..
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3H: AX_ p A + 3. 7xl0 5 (T - T - 2(. 11 cI g12 +Cl+(c+ 2)g11  1 P 2
'cX 0 (c 11- C12 ) (c1 1I.2c1 2 ) Hj

-1.7x10'1 3 p4 + 3.8x10 2 3 p6

From this it is seen that the dependence of free energy on polarization, for a

given applied pressure, is only unaltered if there is a corresponding change in

temperature AT

2H: AT= 1 2 c 1 1 1 2 -C 2g 1 1  H5 (clC) (cl+Zcl)
3.7x10 IlI1 1112-' (13)

3H: AT= 1 [2 (c1 1-c 1 2 ) g 12 +(c 11+c 12 )g1 1  H

3.7xlO5 (c11"c12) (c1+2c 12)

Since a purely linear dependence of the transition temperature on two-

dimensional pressure is thus predicted, it is necessary to supplement Devon-

shire's expansion with higher terms in order to account for the quadratic effect.

While it is too difficult to evaluate the effect of pressure on the transition

temperature itself in the presence of the higher terms, it will be shown that the

effect on the Curie-Weiss temperature T0 is easy to determine. This may be

determined experimentally by extrapolating to zero the inverse susceptibility

of the cubic phase. Its dependence upon two-dimensional and hydrostatic

pressure will be the subject of a future paper. It will be shown in the following

section that the linear part of the shift in the Curie-Weiss temperature for two-

dimensional and hydrostatic pressures gives two independent linear relations

connecting the coefficients gll and g 12, and the quadratic shifts give two linear

relations connecting the 9 coefficients in the higher terms with which Devon-

shire's expansion may be supplemented.

Effect of Higher Terms in the Free Energy on the Curie-Weiss Temperature.

Due to the symmetry of the crystal, the strains with respect to the cubic

phase depend on even powers of the polarization. Since there is a P2 term in

Ull4-
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the strain, the P6 term in the free energy as a function of stress and polari-

zation (given by Eq. (10) for zero stress) will be partially made up of terms

not included in Devonshire's expansion Eq. (1). These are terms in strain P

2 2 3
strain P , and strain . For the present case of no shears and no polar-

ization other than Pz, the free energy including these higher terms will be

Ax I .~c P(x2 +y2 +z 2)+ c P(yz+zx+xy)+.- P 1T 11 2+I p
2, PT112 4 4

+ guZ2 + g 12(X+y) P2 + I. ., P 6 + p 1zP4 + P12 (x+y) P4

+ Y11 z2 P 2 + Yl 2 (x 2 +y 2 ) P 2 + Y13 XYP 2 + Y14 (yz+zx)P 2  (14)

+ 611 (x 3+y 3+z 3 + 61 2xyz + 613 [y(z2 +x) + z(x 2+y ) + x(y 2 Z) .

There is not enough accurate information to evaluate any of these higher

terms, but it is easy to show that the terms with coefficients y and 6 give rise

to a quadratic dependence of the Curie-Weiss temperature T on the pressure.

The isotherms of polarization vs. electric field, that Merz9) calculates

from the free energy, are reproduced in Fig. 4, where the variables e and p

are the field and the polarization, reduced to dimensionless variables for con-

venience, and t is proportional to (T-T 0 ), where T is the Curie-Weiss temper-

ature. It is easy to show that the transition temperature occurs at the point

t = 0. 75 and in Fig. 5 the free energies corresponding to t = 0, t = 0.75 and t = I

are shown schematically. The Curie-Weiss temperature t 0, is clearly the

temperature to which the cubic phase could be supercooled in the absence of

thermal fluctuations, and the tetragonal phase could be overheated to t = I in

the absence of thermal fluctuations. The Curie-Weiss temperature t= 0 is de-

termined by the condition (ap/ Be) =oM taken at zero polarization, where the

strain polarization relations will be those for very small values of these vari-

ables and will therefore be given by Eqs. (5), which may be written
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x IH + G2P2(5)

z C C 2 H + G1 1P 2

When the above strains are substituted into Eq. (14) and the Legendre

transformation terms included, the terms in the free energy as a function of

polarization and pressure Ax. than contain P and hence determine the slope

ap/ ae at p = 0, and so determine the Curie-Weiss temperature, will be

I of"Px + 2(c11+c12) CiG 12 + CIG1 + 2cI 2 (GII+C 2 GI 2 ) +gllC 2 + 2g 1 2 C1 j
2G12 (for 2H) + 2+ C 2

+ 2G 12 +G11 (for 3H) 5 L y11C2 + 2Y14 CIC 2 + ('-Y12+Y3) CI

2 2 (15)

Z 1 2+(26 13 +(2C1C2 G11 +C 2 G1 2) 3 GI H P

Thus the linear dependence of the Curie-Weiss temperature depends en-

tirely on the coefficients g (and, of course, c, which are known) and is given by

Eqs, (13). The quadratic dependence is determined by the coefficients y and 6,

and depends, of course, also on the g and c coefficients.

For two-dimensional pressure, the linear part of the pressure shift

(Eqs. 13) is seen to be proportional to the coefficient GI2 If one can assume

that the Curie-Weiss temperature changes in more or less the same way as the

transition temperature, which has yet to be checked, one would conclude that
p2

GI2 is zero, and therefore that the x strain has no P dependence at all. In

Fig. 6 are plotted the strains from the X-ray data of Kay and Vousden10) against

the fourth power of the polarization as recently measured by Merz;9) within

25 0 C of the transition temperature the x strain is directly proportional to P?4

2rather than P . One may object to using the results of Kay and Vousden on

crystals that gave much too low value of spontaneous polarization. But Merz

10) H. F. Kay and P. Vousden, Phil. Mag. 40, 1019 (1949).



bob* -16 -

0.008

0.007- z vs p 2

0

0

0.006 -

C

S0.005-

0
>•o z vs p4

0
0

0 0.004
0

C

Sur ofplrztinoez

0 0.003 2 0

po0 o

-x vs p 4

0.002-

0.oo,

0 I 2 3 4 5 6 =I09
Square of polarization (Merz)

0 0.5 1.0 1.5 2.0 2.5 3.0 x 109

Fourth power of polarization

Fig. 6. Plots of the tetragonal strains against

powers• of the polarization.



boo -17-

has shown that the reason for these low values in crystals that are not exceed-

ingly good is that some tendency to antiparallel domain formation persists to

fairly appreciable fields. The X-ray parameters, however, are not affected

by the existence of domains. The crystals of Merz have a somewhat lower

transition temperature than those of Kay and Vousden, so the data were plotted

for corresponding temperatures below the transition temperature.

The nature of the terms with coefficients y and 6 is immediately apparent

upon differentiation of the free energy (Eq. 14):
•ZP 2¥1P

az c + Y1 P + 36 11z + 26 1 3 (x + y)

(X P 2
- - = c 11 + + 36 11x + 261 3 (y + z)

ax P + +2
(16)

Y c12 + 13 + 6 12 z + 26 1 3 (x + y)

C 'Z _P ,/42

ax c12 + Y14 P + 612 Y + 26 13 (y + z)

For the small polarizations and strains involved in the present discussion,

one can make some qualitative statements about the y and 6 coefficients. Con-

sidering the first of the above equations, it states that the mechanical stiffness

in the z direction departs from Hooke's

Energy law by the quantity 3 611z when the x and y

directions are clamped and the polarization

is not allowed to change (since the partial

derivatives are taken at constant x, y, P,

in the first line). This is to be expected,

since, with x, y and P clamped, the energy

Z as a function of extension in the z direction

Fig. 7. Typical dependence of is not a parabola, but is rather as shown in

energy on an inter- Fig. 7, which to a second approximation
atomic distance.

has a negative z3 term in addition to the z
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term. Hence the coefficient 611 must be a negative quantity. For small changes

in the clamped dimensions x and y, the shape of the energy curve in the z di-

rection will probably not change much except to be shifted, so one would expect

613 to be rather small. If one increases the fixed value of the polarization, z

2
will be increased since z = G11P , and thus yII must have the same sign as 611,

i.e., negative.

Considering the second of Eqs. (16), the polarization P2 does not change

the strain x for small values, since this depends on p , and therefore the co-

efficient y12 is zero. For the same reason y13 in the third equation is also

zero. In the third equation, a small change in the clamped dimension z will not

much affect the X,y stress-strain relation, so 612 is small. In the fourth

equation, where y and z are clamped, the stress Z produced by a strain x will

2not be influenced by P since x does not produce any p , and the coefficient Y14

is small.

According to the foregoing, one might assume, for qualitative purposes,

that "11 = 'Y13 = -14 = 612 = 613 = 0, for which the terms in H2p2 in Eq. (15)

reduce, since G also is zero, to IC 2 + 36 C 2 GI H2 P 2 which is a negative
12 1 ll 2  11 2 1

quantity, since G is positive and y/I and 611 are both negative. This means that

the Curie-Weiss temperature will rise quadratically with two-dimensional

P 12
pressure. Using Mason's11) values cu1 = 2. 07x10 and c12 = I. 40x12 the value

2of C22 for two-dimensional pressure is about 18 times that for hydrostatic pressure,

so that the quadratic effect for hydrostatic pressure is 18 times smaller.

Finally, we may consider the linear dependence of the Curie-Weiss temper-

ature on hydrostatic pressure. If the linear effect for two-dimensional pressure

is absent, then c 1 g12 - c12g11  0 from which g1 2 = 0.68 g1l. In order to match

the dependence of the Curie-Weiss temperature on hydrostatic pressure to

11) W. L. Bond, W. P. Mason, and H, J. McSkimin, Phys. Rev. 82, 442 (1951).
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Mirz's3) measurement of the transition, it is necessary to assume g11 = -0. 33.

Assuming z = aP + bP4 one can match the z strain in Fig. 6 quite accurately

o - 12within 25 C of the transition by assuming a = 0. 57x10 , which requires a

value for g,, of - 1. 2. The curve in Fig. 6 suggests a negative P6 term in the

strains; this could reduce the coefficient a and thus g,,.

Probable Effect on the Hysteresis Loop

If the shift remains quadratic to much higher pressures, a two-dimensional

pressure of 2000 atm. should raise the transition by more than 100 0 C. This

should result in a marked increase of the coercive field at room temperature.

One would then have a hysteretic circuit element with a variable switching field.

The pressure could easily be controlled by a screw, driven by a small hand

wheel. For one operating temperature, room temperature, the clearance

between the crystal and the clamp could be made sufficiently small to prevent

extrusion of the rubber at quite high pressures.

It is possible that at room temperature the hysteresis loop is affected

by the proximity of the orthorhombic transition around 5 0 G, since the direction

of the polarization might well reverse by a rotation through the orthorhombic

configurations rather than by direct passage through the cubic configuration.

In this case, the effect of the two-dimensional pressure on the orthorhombic

transition would enter into the picture. It is expected that the two-dimensional

pressure, as presently applied to two of the pseudo-cubic axes, will cause a

very large depression of the orthorhombic transition. The reason for ex-

pecting this is that the elongation that accompanied the spontaneous polarization

would be working in part against a component of compression, when the polar-

ization direction snaps into a new direction at 450 to the direction in which

there is no component of stress. The rhombohedral phase would likewise be

suppressed by the two-dimensional pressure as applied at present. Thus a
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high enough pressure would result in a behavior much more like that of lead

titanate: a Curie point around 500 0 C, probably no lower phase transitions,

a high coercivity, and possibly even an order-disorder type of transition, as

mentioned in the introduction. From the magnitudes of the effects of two-

dimensional and of hydrostatic3) pressures on the orthorhombic transition, it

will be possible to obtain information about the shear terms in Devonshire's

expansion.
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